Изгибающий момент при полиноминальном приближении зоны упрочнения
научный журнал «Актуальные исследования» #19 (22), октябрь '20

Изгибающий момент при полиноминальном приближении зоны упрочнения

Получен изгибающий момент прямоугольного бруса для параболических и кубических аппроксимаций зоны упрочнения материала.

Аннотация статьи
зона упрочнения
изгибающий момент
полином
аппроксимация кривой
Ключевые слова

Упругопластический изгиб широко используется при производстве труб из стального листа, правке стального листа на листоправильных машинах и изделий из стального бруса [1, 2]. Для расчета силовых факторов металлургических машин при этих процессах необходимо знать численные значения изгибающего момента стального листа и бруса [2, 3]. Будем считать, что зависимость нормального напряжения s от относительной деформации e есть антисимметричная функция: s(-e) = -s(e).

Упругий изгиб бруса. Рассмотрим брус (лист) прямоугольного поперечного сечения. Пусть h и b - толщина и ширина бруса, E - модуль упругости металла бруса, sy и su - пределы текучести и прочности, d - относительное удлинение после разрыва, ey = sy/E и eu - относительные удлинения при пределе текучести и пределе прочности, Py - модуль упрочнения при пределе текучести. В марочниках сталей и сплавов [2] указаны значения sy, su и d, а значения eu и Py не указаны. Приближенно значения eu и Py для высокопрочных трубных сталей можно вычислить по формулам:

Точно значения eu и Py можно вычислить по диаграмме растяжения стали.

При упругом изгибе бруса изгибающий момент равен

где r - радиус кривизны нейтральной плоскости бруса.

Упругопластический изгиб бруса: прямая параболическая аппроксимация (вариант 1). Пусть кривая упрочнения проходит через предел текучести, предел прочности и имеет максимум в пределе прочности. Тогда аналитическое описание кривой упрочнения имеет вид [3]

Тогда при упругопластическом изгибе бруса безразмерный изгибающий момент в поперечном сечении бруса равен

Упругопластический изгиб бруса: прямая параболическая аппроксимация (вариант 2). Пусть кривая упрочнения проходит через предел текучести, предел прочности и имеет заданный модуль упрочнения при пределе текучести. Тогда аналитическое описание кривой упрочнения имеет вид [3]

Тогда при упругопластическом изгибе бруса безразмерный изгибающий момент в поперечном сечении бруса равен

Упругопластический изгиб бруса: обратная параболическая аппроксимация (вариант 1). Пусть кривая упрочнения проходит через предел текучести, предел прочности и имеет максимум в пределе прочности. Тогда аналитическое описание кривой упрочнения имеет вид [3]

Тогда при упругопластическом изгибе бруса безразмерный изгибающий момент в поперечном сечении бруса равен

Упругопластический изгиб бруса: обратная параболическая аппроксимация (вариант 2). Пусть кривая упрочнения проходит через предел текучести, предел прочности и имеет заданный модуль упрочнения при пределе текучести. Тогда аналитическое описание кривой упрочнения имеет вид [3]

Тогда при упругопластическом изгибе бруса безразмерный изгибающий момент в поперечном сечении бруса равен

Упругопластический изгиб бруса: прямая кубическая аппроксимация. Пусть кривая упрочнения проходит через предел текучести, предел прочности, имеет максимум в пределе прочности и заданный модуль упрочнения при пределе текучести. Тогда аналитическое описание кривой упрочнения имеет вид [3]

Тогда при упругопластическом изгибе бруса безразмерный изгибающий момент в поперечном сечении бруса равен

Упругопластический изгиб бруса: обратная кубическая аппроксимация. Пусть кривая упрочнения проходит через предел текучести, предел прочности, имеет максимум в пределе прочности и заданный модуль упрочнения при пределе текучести. Тогда аналитическое описание кривой упрочнения имеет вид [3]

Тогда при упругопластическом изгибе бруса безразмерный изгибающий момент в поперечном сечении бруса равен

 

Текст статьи
  1. Campbell J. Complete casting handbook: Metal casting processes, metallurgy, techniques and design. 2015. 1028 p.
  2. Зубченко А.С. Марочник сталей и сплавов. М.: Машиностроение, 2003. 784 с.
  3. Шинкин В.Н. Полиномы для описания упрочнения материалов // Актуальные исследования. 2020. № 18(21). С. 11-14.
Список литературы
Ведется прием статей
Размещение электронной версии
26 января
Загрузка в elibrary
26 января
Рассылка печатных экземпляров
01 февраля