научный журнал «Актуальные исследования» #32 (59), август '21

Нейросетевой ABC-анализ многономенклатурных запасов

В работе решается задача управления логистическими потоками при реализации технологии ABC-анализа через нейросетевой анализ многономенклатурных запасов. Рассмотрено практическое применение глубоких нейронных сетей. На основе развития этого метода предлагается новая методика оптимизации управления многономенклатурными запасами.

Аннотация статьи
многокритериальная оптимизация
многономенклатурные запасы
интегрированная цепь поставок
нейросетевые технологии
ABC-анализ
Ключевые слова

Продолжением работы [1] является создание ABC-нейро-классификатора. Расчет ABC-анализа целесообразно производить средствами программы MS Excel. Результаты данного анализа будут использованы для обучения создаваемой нейросети. На основе данных выполняется анализ.

Производится определение доли товаров ABC-анализа на основе их продаж. Расчет произведен по случайным величинам для товаров, что в дальнейшем возможно применить на практике к любым видам товаров.

Таблица

Данные ABC-анализа для 1 строки нейро-классификатора

Объем, тыс. руб.

Доля реализации по позиции, %

Доля реализации по позиции, %

Доля реализации позиции нарастающим итогом, %

Результаты ABC-анализа

1

156

1

0,6088

4

37,8522

37,8522

A

2

6450

2

25,1697

3

35,4991

73,3513

A

3

9097

3

35,4991

2

25,1697

98,5210

C

4

9700

4

37,8521

1

0,6088

99,1298

C

5

97

5

0,3785

5

0,3785

99,5083

C

6

50

6

0,1951

6

0,1951

99,7034

C

7

41

7

0,1600

7

0,1560

99,8634

C

8

25

8

0,0976

8

0,0975

99,9610

C

9

6

9

0,0234

9

0,0234

99,9844

C

10

4

10

0,0156

10

0,0156

100

C

Итог

25626

         

 

Необходимо создать условные массивы данных (10 шт. в каждом примере). Артикулы и объем транспонируются. Транспонирование необходимо для дальнейшего настраивания нейро-классификатора и удобства восприятия данных человеком. Далее отдельно берутся артикулы и к ним транспонируются итоговые доли для АВС-анализа. Эти данные, сформированные в массивы, служат примером для обучения нейросети.

В данной таблице первый столбец отражает количество номенклатурных позиций продукции по порядку от 1 до 10. Второй столбец является показателем объема продаж в тыс. руб. по каждой номенклатурной позиции, где последняя строка является общей суммой по данному столбцу.

Введем следующие обозначения:

Q– количество продаж продукции по номенклатурной позиции i;

Qсум – суммарное количество продаж продукции за период анализа.

Четвертый столбец отражает долю реализации по позиции от общего объема. Расчет для первой строки:

где αi – доля продукции i в суммарном объеме поставки, %;

Q1= 156 – объем продаж для 1 номенклатурной позиции, тыс. руб.;

Qсум =25626 – суммарный объем продаж за период анализа по всем номенклатурным позициям, тыс. руб.

В соответствии с рисунком 1 изображено вычисление доли реализации по позиции для ABC-анализа в MS Excel (ячейка G2).

Рис. 1. Вычисление доли реализации по позиции для ABC-анализа в MS Excel

Последующие строки рассчитываются также путем деления объема номенклатурной позиции на общую сумму объема продаж и умножением на 100%. Далее необходимо полученные доли и соответствующие им номера номенклатурных позиций отсортировать в порядке убывание, что отражается в шестом столбце.

В седьмом столбце отражается доля реализации позиции нарастающим итогом в ABC-анализе, которая должна быть не более 100%. Данный параметр был получен путем сложения предыдущей доли в столбце семь и доли соответствующей ей номенклатурной строки столбца 6:

αсумм ii-1i.

где α0=0.

αсумм11-11011=37,8522, 

αсумм22-1212=37,8522 + 35,4991 = 73,3513.

………..

В крайнем правом столбце отражены результаты ABC-анализа, согласно диапазону: «A» от 0 до 80; «B» от 80 до 95; «C» от 95 до 100. Например, товару под номером 4 соответствует значение доли 37,8522, что входит в группу «A».

Более точное управление запасами многономенклатурных грузов дает комплексное использование различных методы классификации, в том числе, сегментирование на ABC классы согласно правилу В. Паретто. В этой связи, рассмотрим структуру АВС нейро-классификатора. Блок ABC анализа представляет собой приложение, основанное на результате вычислений нейросети. Благодаря обучению на заранее размеченных данных сеть автоматически подбирает весовые коэффициенты для последующих данных, вычисляя ответы на них с заданной точностью, что позволяет частично или полностью автоматизировать процесс классификации многономенклатурных грузов или товаров [2, 3].

Для обучения сети нам необходима обучающая выборка, в данном случае используются номер номенклатурной группы (артикул) или же просто порядковый номер по списку, а также объем реализации данного товара. Данные для обучения нейросети используем из таблицы. При классическом анализе проводимом, например, в среде Excel необходимо заполнить номенклатурные группы и объемы (либо другие критерии, по которым будет проводиться данных вид анализа), далее вычисляется доля реализации по позиции, % с помощью формул, после чего формируется упорядоченный список на основе доли реализации позиции и номенклатурного номера, где приоритетом по сортировке выступает доля.

Далее полученные отсортированные доли складываются по порядку (за исключением первой ячейки). Полученные доли отражают группу вычисленную A, B или C к которой относится данный вид товара после анализа. С целью автоматизации был разработан нейросетевой ABC классификатор. В общем виде процесс обучения сети выглядит так:

  • подготовка данных:

Массив с Данными для обучения

Массив с Ответами для данных для обучения

Массив с новыми данными

Массив с ответами для новых данных

  • сборка нейросети;
  • обучение нейросети;
  • вывод вычисленных ответов на экран пользователя (оператора).

Для обучения сети в данном случае используется «Объем реализации в рублях», а ответами для обучения нейросети «Доля реализации позиции нарастающим итогом, %».

На рисунке 2 отображены результаты работы программы. Программа вводит массив с вычисленными нейросетью значениями. Далее выводится результат вычислений с помощью функции «print».

Рис. 2. Массив с артикулами

В результате работы программы были получены результаты, представленные на рисунке 2. Изображен массив с артикулами, которые могут быть произвольными. В данном случае использованы значения от 1 до 10. Это необходимо для последующего совмещенного ABC и XYZ-анализов. Через эти артикулы будет производиться соответствие 2-х видов анализа по одному виду товара или груза. Например,

Данная матрица может вмещать в себя любое количество артикулов, а программа проводить полуавтоматический или автоматический расчет согласно результатам анализа.

ЗАКЛЮЧЕНИЕ

В рамках данного раздела был отражен ABC-анализ для многономенклатурных групп позиций при помощи нейросети. Данный вид анализа позволяет производить сложные виды прогнозирования, основанные на результатах прошлых периодов, а также получать вычисления с большой вероятностью, что является фундаментальной основой для стратегического планирования деятельности бизнес-компании. Отметим также, что с увеличением номенклатуры и количества запасов задача кратно усложняется, но благодаря работе нейро-классификатора данный процесс ускорется или полностью автоматизируется.

Текст статьи

 

  1. Кузина Е.А., Сизинцев А.С., Пашков Н.Н. Нейросетевой XYZ анализ многономенклатурных грузов // Актуальные исследования. 2020. №15 (18). С. 28-33. URL: https://apni.ru/article/1076-nejrosetevoj-xyz-analiz-mnogonomenklaturnikh
  2. Пашков Н.Н. Алгебраический метод решения линейной многокритериальной задачи / Современные технологии. Системный анализ. Моделирование. № 1 (41), 2014. С. 64-69.
  3. Пашков, Н.Н. Транспортная логистика (линейное программирование). М.: Прометей, 2020. – 202 с.
Список литературы
Ведется прием статей
Прием материалов
c 25 сентября по 01 октября
Осталось 5 дней до окончания
Публикация электронной версии статьи происходит сразу после оплаты
Справка о публикации
сразу после оплаты
Размещение электронной версии журнала
05 октября
Загрузка в eLibrary
05 октября
Рассылка печатных экземпляров
13 октября