Полиэфиримид (PEI) – аморфный, прозрачный полимер с янтарным оттенком, который характеризуется высокой термостойкостью, великолепными электрическими свойствами, стойкостью к УФ-излучению и негорючестью в сочетании с низким дымообразованием.
Полиэфиримиды относятся поликонденсационным полимерам [1]. Они представляют собой гетероциклическую структуру с регулярным чередованием повторяющихся эфирных и имидных циклов [2]. Общую формулу полиэфиримидов можно представить следующим образом:
К отличительным особенностям полиэфиримидов относятся: великолепная стабильность размеров, стойкость к УФ-излучению и гидролизу, прозрачность для микроволн и волн видимого спектра, природная негорючесть, соответствие медицинским нормам.
Из PEI посредством экструзии можно получать профили, листы, трубы, а также изоляцию проводов и пленки. Полуфабрикаты в дальнейшем можно обрабатывать как традиционными механическими способами, так и с помощью лазера, а отдельные компоненты могут соединяться друг с другом посредством растворителей или с помощью ультразвука. Поверхность изделий из полиэфиримида можно полировать теми же способами, что и остальные аморфные пластики – открытым пламенем, полировочными пастами или паром – для достижения максимального эффекта. Кроме того, PEI можно формовать и склеивать с другими материалами с помощью клеев, растворителей или ультразвука.
Полиэфиримид можно отнести к аморфным полимерам. Он обладает низкой воспламеняемостью, выдерживает большой температурный интервал (от -700С до +1800С). Он стоек к механическим воздействиям, легко поддается к термоформованию и механической обработке. Кроме этого, устойчив к воде и парам, ультрафиолетовому и энергетическому излучению. И как ценное свойство необходимо отметить его неподверженность к воздействию кислот и слабых щелочей.
Учитывая ценные свойства полиэфиримида, актуальной задачей является совершенствование синтеза данного полимера.
Синтез полиэфиримидов возможно при участии реакций ароматического нуклеофильного нитрозамещения и циклизации [3]. Эти процессы определяют два основных метода получения полиэфиримидов. В случае использования первого метода необходимо сначала провести реакцию циклизации, в результате которой формируются имидные циклы, а затем реакции ароматического нуклеофильного нитрозамещения – с образованием гибких эфирных «шарниров». Этот метод носит название реакции полинитрозамещения. Второй метод включает сначала реакцию ароматического нуклеофильного нитрозамещения, а затем реакцию циклизации. Это альтернативный способ синтеза полиэфиримидов, в котором стадия формирования полимера представляет собой полициклоконденсационный процесс [2].
Получение полиэфиримида (ПЭИ) с молекулярной массой, обеспечивающей необходимые эксплуатационные свойства, с помощью реакции полинитрозамещения представляется проблематичным [4]. Наиболее перспективным является синтез этих полимеров по традиционной схеме получения полиимидов – из диаминов и диангидридов ароматических тетракарбоновых кислот [5-13], содержащих простые эфирные связи. До недавнего времени получение подобных эфирсодержащих диангидридов вызывало серьезные затруднения. Новый подход к синтезу этих соединений позволил получить эфирсодержащие ароматические бис-фталевые ангидриды самого различного строения. При этом используются реакции замещения активированных ароматических нитрогрупп фенолятными анионами [14-16].
В частности, отмечается весьма эффективная активация нитрогрупп двумя карбонилами, содержащимися в циклических имидах [14, 17-21], а также нитрильными группами [14, 17, 18], что позволило осуществить синтез широкого ассортимента диангидридов ароматических тетракарбоновых кислот, содержащих простые эфирные связи.
Следует отметить, что бис-фталевые ангидриды, содержащие простые эфирные «шарниры», существенно отличаются по своим свойствам от наиболее распространенных бис-фталевых диангидридов – пиромеллитовой, 3.3'-дифенилтетракарбоновой и бензофенон-3,3'-4,4'-тетракарбоновой кислот [23]. Электронодонорный характер эфирных «мостиков» обусловливает низкое сродство этих соединений к электрону [22, 24, 25] и соответственно их незначительную электрофильность [24, 25], что проявляется в их устойчивости к гидролизу [14, 17, 22] и в невысокой активности в реакциях с диаминами [14, 22].
Синтезированные бис-фталевые ангидриды в отличие от наиболее распространенных мономеров этого класса, хорошо растворяются в обычных органических растворителях, что коррелирует с растворимостью целевых полиимидов в органических растворителях [26]. Это позволило провести синтез ПЭИ с использованием не только традиционного двухстадийного процесса [5-13], но и нетрадиционных методов – высокотемпературной гомогенной поликонденсации в неполярных органических фенольных растворителях [27].
Некоторые ПЭИ могут быть получены полициклоконденсацией в расплаве [28, 29]. Надо отметить, что с экономической, экологической и технологической точки зрения этот метод является наиболее перспективным. Кроме того, в этом случае отпадает необходимость в использовании трудноудаляемого из полимера растворителя (амидного или фенольного типа), что имеет существенное значение при переработке и эксплуатации полимеров. Получение ПЭИ по такой технологии может осуществляться непосредственно из смеси исходных соединений с использованием различных катализаторов и без них [28, 29], а также с помощью предварительного взаимодействия мономеров. В последнем случае образуется сложная композиция, в основном состоящая из олигомеров полиэфирамидокислоты. Исходные соединения содержатся в незначительном количестве или полностью отсутствуют. Предварительное взаимодействие мономеров может осуществляться в инертных низкокипящих растворителях типа метиленхлорида, хлороформа, 1,2-дихлорэтана или же в воде. Возможно использование для этих целей смеси указанных растворителей и воды.
Полиэфиримиды могут быть получены также непрерывным методом непосредственно в экструдере [29]. Смесь исходных соединений проходит последовательно несколько зон, имеющих различную температуру – от низкой (при смешении мономеров) до температуры плавления конечного продукта. Циклизационная вода постоянно удаляется из экструдера через соответствующие отверстия, причем в последней зоне экструдера при помощи вакуума. Полимер на выходе из экструдера получают либо в виде гранул, либо в виде пленки. Предусмотрено также получение композиций на основе ПЭИ смешением их с различными наполнителями непосредственно в экструдере.
Таким образом, потребление ПЭИ растет опережающими темпами по сравнению с потреблением других видов конструкционных материалов.