Главная
АИ #17 (147)
Статьи журнала АИ #17 (147)
Разработка системы определения состояния светофоров по электрическим импульсам

Разработка системы определения состояния светофоров по электрическим импульсам

Автор(-ы):

Стативко Роза Усмановна

Мавлянов Руслан Джалилович

25 апреля 2023

Научный руководитель

Стативко Роза Усмановна

Секция

Информационные технологии

Ключевые слова

светофоры
мониторинг
визуальные методы
инструментальные методы
неисправности

Аннотация статьи

В данной статье рассматриваются две группы методов мониторинга светофоров: визуальные и инструментальные. Анализируются преимущества и недостатки каждой группы методов с точки зрения точности, трудоемкости, затратности и оперативности получения информации о состоянии светофоров. Также подчеркивается важность постоянного контроля за светофорами для обеспечения безопасности и эффективности дорожного движения. Статья содержит обзор существующих приборов и датчиков для инструментального мониторинга светофоров, а также примеры применения визуальных методов мониторинга светофоров с использованием видеокамер.

Текст статьи

Светофоры являются важными элементами дорожной инфраструктуры, обеспечивающими безопасность и эффективность движения транспортных средств и пешеходов. Правильная работа светофоров зависит от их технического состояния и согласованности с другими светофорами на улично-дорожной сети. Поэтому необходимо постоянно контролировать состояние светофоров, своевременно обнаруживать и устранять любые неисправности.

Существующие методы мониторинга светофоров можно разделить на две группы: визуальные и инструментальные.

Визуальные методы мониторинга светофоров основаны на наблюдении за светофорами с помощью человеческого глаза или видеокамер. Такие методы позволяют определять цвет горящего сигнала на светофоре, а также выявлять некоторые виды неисправностей, такие как перегорание ламп, повреждение корпуса или оптики, неправильное расположение или ориентация светофора и т. д. Однако такие методы имеют ряд недостатков, таких как:

  • низкая точность и достоверность определения состояния светофора из-за человеческого фактора, погодных условий, загрязнения оптики или камеры, наличия препятствий или отражений;
  • высокая трудоемкость и затратность проведения визуального обследования светофорных объектов, особенно на больших территориях;
  • невозможность получения информации о состоянии светофора в режиме реального времени, а только по результатам обработки видеоданных или отчетов обследующего персонала.

Инструментальные методы мониторинга светофоров основаны на измерении различных физических параметров светофора с помощью специальных приборов или датчиков. Такие методы позволяют определять цвет горящего сигнала на светофоре, а также выявлять различные виды неисправностей, такие как перепутывание проводов, сбой программы, перегрузка или короткое замыкание цепи, изменение напряжения или тока и т. д. Однако такие методы также имеют ряд недостатков, таких как:

  • высокая сложность и дороговизна инструментального обследования светофорных объектов, требующего специального оборудования и квалифицированного персонала;
  • невозможность постоянного мониторинга светофоров, а только периодического измерения их параметров;
  • невозможность удаленного контроля за состоянием светофоров, а только локального считывания данных с приборов или датчиков [2].

Таким образом, существующие методы мониторинга светофоров не обеспечивают достаточной эффективности и оперативности контроля за состоянием светофорных объектов на улично-дорожной сети. Поэтому необходимо разработать новый подход к мониторингу светофоров, который бы устранял недостатки визуальных и инструментальных методов и обеспечивал бы:

  • высокую точность и достоверность определения состояния светофора;
  • низкую трудоемкость и затратность проведения мониторинга светофорных объектов;
  • возможность получения информации о состоянии светофора в режиме реального времени;
  • возможность удаленного контроля за состоянием светофоров.

Для измерения электрических импульсов, посылаемых контроллером светофора, используются специальные датчики, подключенные к светофорам. Датчики считывают напряжение и ток в цепи светофора и преобразуют их в цифровые сигналы. Датчики также определяют номер и тип светофора, к которому они подключены. Характеристики, предусмотренные для датчика отражены в таблице 1.

Таблица 1

Характеристики датчика

Диапазон измеряемого напряжения

от 0 до 250 В

Диапазон измеряемого тока

от 0 до 10 А

Разрешение измерений

1 мВ и 1 мА

Частота дискретизации

100 Гц

Интерфейс передачи данных

беспроводной

Питание

от сети светофора

Датчики устанавливаются на светофорах таким образом, чтобы не мешать видимости сигналов и не нарушать эстетический вид светофорных объектов. Датчики калибруются перед установкой с помощью специального прибора, который подает на датчик известные значения напряжения и тока и сравнивает их с измеренными датчиком значениями [1].

Для передачи данных с датчиков на центральный сервер используется приемник, который устанавливается в непосредственной близости от светофорных объектов. Приемник обеспечивает беспроводную связь с датчиками по Bluetooth или Wi-Fi и принимает от них данные о напряжении, токе, номере и типе светофора. Приемник также определяет свое местоположение с помощью GPS или GLONASS и передает его вместе с данными с датчиков. Характеристики приёмника отражены в таблице 2.

Приемник устанавливается на мачте, мостике или консоли светофорного объекта таким образом, чтобы обеспечить наилучший прием сигналов с датчиков и передачу данных на сервер. Приемник настраивается с помощью специального программного обеспечения, которое позволяет задать параметры связи с датчиками и сервером, а также проверить работоспособность приемника и датчиков.

Таблица 2

Характеристики приемника

дальность связи с датчиками

до 100 м

скорость передачи данных

до 1 Мбит/с

интерфейс передачи данных на сервер

беспроводной (GPRS, 3G, 4G или 5G)

питание

от сети 220 В

Приемник устанавливается на мачте, мостике или консоли светофорного объекта таким образом, чтобы обеспечить наилучший прием сигналов с датчиков и передачу данных на сервер. Приемник настраивается с помощью специального программного обеспечения, которое позволяет задать параметры связи с датчиками и сервером, а также проверить работоспособность приемника и датчиков [1].

Для обработки данных с приемников используется центральный сервер, который расположен в управлении дорожного движения или в специализированном центре мониторинга светофоров. Сервер обеспечивает прием данных с приемников GPRS, 3G, 4G или 5G и их хранение в базе данных. Сервер также выполняет анализ данных с помощью специального алгоритма и определяет состояние светофоров по электрическим импульсам [2].

Алгоритм определения состояния светофоров по электрическим импульсам основан на следующих принципах:

  • каждый цвет сигнала на светофоре соответствует определенному уровню напряжения и тока в цепи светофора;
  • каждый переход между цветами сигналов на светофоре соответствует определенному изменению напряжения и тока в цепи светофора;
  • каждый вид неисправности светофора соответствует определенному отклонению напряжения и тока в цепи светофора от нормальных значений.

Алгоритм определения состояния светофоров по электрическим импульсам состоит из следующих шагов:

  • фильтрация и сглаживание данных о напряжении и токе с датчиков для устранения шумов и помех;
  • выделение импульсов напряжения и тока, соответствующих переключению цветов сигналов на светофоре;
  • определение длительности и амплитуды импульсов напряжения и тока;
  • сопоставление импульсов напряжения и тока с заранее заданными эталонными значениями для разных типов светофоров;
  • определение цвета горящего сигнала на светофоре по амплитуде импульса напряжения или тока;
  • определение вида неисправности светофора по отклонению амплитуды или длительности импульса напряжения или тока от эталонных значений;
  • формирование отчета о состоянии светофоров по электрическим импульсам, содержащего информацию о номере и типе светофора, цвете горящего сигнала, виде неисправности и времени ее обнаружения.

Сервер также обеспечивает визуализацию данных о состоянии светофоров на географической карте и в табличном виде, а также возможность просмотра истории изменения состояния светофоров за определенный период времени. Сервер также предоставляет интерфейс для доступа к данным о состоянии светофоров по электрическим импульсам для различных пользователей, таких как операторы дорожного движения, службы ремонта и обслуживания светофоров, научные и образовательные учреждения и т. д.

В данной работе был предложен новый подход к мониторингу светофоров по электрическим импульсам, который позволяет определять цвет горящего сигнала на светофоре, а также выявлять различные виды неисправностей, такие как перегорание ламп, перепутывание проводов, сбой программы и т. д.

Для реализации предложенного подхода была разработана и протестирована система определения состояния светофоров по электрическим импульсам, состоящая из трех основных компонентов: датчиков, подключенных к светофорам, приемника, передающего данные на центральный сервер, и сервера, обрабатывающего данные и предоставляющего интерфейс для доступа к ним.

Список литературы

  1. Андреев А.В., Баранов А.В., Кузнецов А.А. Система автономного мониторинга c маленьким бюджетом // [Электронный ресурс]. URL: https://habr.com/ru/articles/195594/ (дата обращения: 25.04.2023). – Текст : электронный.
  2. Светофор Т.7 с системой резервного питания. Удаленный мониторинг. В наличии // [Электронный ресурс]. URL: https://dtech.su/avtonomcomplex/svetofort7/setevoysvetofor (дата обращения: 25.04.2023). – Текст : электронный.

Поделиться

175

Стативко Р. У., Мавлянов Р. Д. Разработка системы определения состояния светофоров по электрическим импульсам // Актуальные исследования. 2023. №17 (147). Ч.I.С. 40-43. URL: https://apni.ru/article/6064-razrabotka-sistemi-opredeleniya-sostoyaniya

Другие статьи из раздела «Информационные технологии»

Все статьи выпуска
Актуальные исследования

#21 (203)

Прием материалов

18 мая - 24 мая

осталось 6 дней

Размещение PDF-версии журнала

29 мая

Размещение электронной версии статьи

сразу после оплаты

Рассылка печатных экземпляров

7 июня