Введение
Как уже отмечалось в [11], одной из основных тенденций развития мировой экономики в соответствии с [14, с.16] является формирование Глобальной информационной сети. В [11] также рассматриваются общие и частные особенности развертывания сетей 5G. Там же отмечается, что основным преимуществом сетей 5G по сравнению с уже эксплуатируемыми является обеспечение непрерывного доступа в Интернет для высокоскоростных абонентов. Это достигается при интеграции наземного сектора сетей сотовой связи с Глобальными навигационными спутниковыми системами (ГНСС). Подтверждением является Российский проект ESIM (Earth stations in motion) [13, 16], который в совокупности со спутниками HTS (High Throughput Satellite) должен к 2022 г. обеспечить широкополосным доступом 90 % территории Российской Федерации. Подобное решение уже функционирует в Великобритании и обеспечивает 100 % покрытие территории Объединенного Королевства широкополосным доступом в Интернет с помощью технологии LTE [15].
В проекте ESIM информация ГНСС применяется для определения точности положения абонента. Схема работы данного терминала приведена на рис. 1 [16].
Рис. 1. Схема работы абонентов наземного сектора системы ESIM [16]
Анализ данной схемы позволяет сделать вывод о том, что качество связи во многом зависит от точности определения координат абонента, особенно при его перемещении с высокими скоростями. Для сопряжения технологии 5G со спутниковыми технологиями возникает вопрос о задержке в передаче сигнала [6]. Для технологии 5G задержка сигнала должна составлять 10 мс и в перспективе 1 мс при обеспечении скорости абонентского доступа в сотни мегабит в секунду. Однако в спутниковых каналах связи данная задержка существенно выше. Подтверждением сказанному являются данные из табл., в которой приводятся данные из [7] о величине задержек в известных системах спутниковой связи.
Таблица
Сведения о величине задержек в каналах спутниковой связи [7]
Спутник (компания) |
Задержка, с |
Минимальная стоимость терминала, дол. |
---|---|---|
Iridium |
5,0-20,0 |
400 |
Globalstar |
н.д. |
150-200 |
Orbcomm |
15,0 |
300 |
Aprize Satellite |
н.д. |
н.д. |
Гонец |
минуты, часы |
600-1750 |
Анализ данной таблицы показывает, что задержки в известных каналах спутниковых систем намного превышают предельно допустимые значения данного параметра в системах сотовой связи 5G, что делает тему исследований актуальной.
Величина задержки в каналах спутниковой связи, как известно [8], обусловлена особенностями распространения радиоволны в атмосфере Земли, приводящими к увеличению пройденного расстояния, а также не учетом гравитационного воздействия Луны и Солнца, вызывающего твердотельные приливы.
Цель доклада – оценка величины задержки сигнала, обусловленной твердотельным приливом вследствие воздействия гравитации Луны и Солнца.
Решаемая задача
Исследование величины задержки сигнала, обусловленной твердотельным приливом, в зависимости от географической широты пункта наблюдения.
Используемые методы
При проведении исследований используем методы космической геодезии [8].
Результаты исследования
Выполненный анализ используемых в настоящее время методов позиционирования наземного объекта в ГНСС показал, что для мобильных абонентов, перемещающихся, в том числе, и по поверхности океана, где отсутствуют станции наблюдения, наиболее целесообразным является метод точного позиционирования (Precise Point Position, PPP) [10]. При его реализации учитывается влияния ряда специфических источников погрешностей на основе использования не только информации со спутника, но и информационных продуктов (точных эфемерид, параметров часов, параметров вращения Земли и т.д.), представляемых международными службами бесплатно. Среди факторов, вызывающих изменение в пространстве положения наземного пункта наблюдения, являются твердотельные приливы вследствие дрейфа магнитного полюса Земли, а также гравитационного воздействия на твердую кору Земли Луны и Солнца [8].
Анализ известных моделей гравитационного воздействия Луны и Солнца на величину твердотельных приливов показал, что на точность получаемых результатов влияет выбор задания координат Луны и Солнца, т.е. их эфемерид. Существуют два способа их задания, различающиеся как точностью получаемых результатов, так и вычислительными затратами:
- из таблиц эфемерид планет JPL DE406/LE406 [1], сформированных по результатам измерений NASA;
- с использованием аналитического разложения в ряды Брауна-Эккерта [3, 4, 9, 12].
Первый вариант задания обеспечивает более высокую точность получаемых результатов, однако требует наличия большого числа коэффициентов разложения. Второй вариант допускает представление в закрытой форме, позволяющей представить результат в виде асимптотического разложения, допускающего проведение анализа влияния отдельных факторов.
Проводимые авторами исследования выполнялись в два этапа. На первом осуществлялась оценка влияния точности определения эфемерид на величину вектора смещений положений Луны и Солнца с использованием разработанной программы. На втором этапе оценивалось влияние воздействия Луны и Солнца на величину радиальной составляющей твердотельного прилива для ряда наземных пунктов.
На втором этапе исследования проводились для момента времени 20 мая 2020 года для пунктов номер 7110 Monument Peak (США) с координатами с.ш. и з.д., номер 7097 Easter Island (Чили) с координатами ю.ш. и з.д.; номер1864 Maidanak (Узбекистан) с.ш. и в.д. Результаты моделирования приведены на рис. 2-4.
Рис. 2. Смещение в измерительном пункте Monument Peak (США)
Рис. 3. Смещение в измерительном пункте Easter Island (Чили)
Рис. 4. Смещение в измерительном пункте Maidanak (Узбекистан)
Обсуждение результатов исследований
Анализ приведенных результатов показывает, что разработанная программа обеспечивает получение достоверных результатов при вычислении вектора смещений Δrsol вследствие твердых приливов, обусловленных лунно-солнечным воздействием на твердую кору Земли. Отличие результатов не превышает 6%, а сами отличия обусловлены различной точностью представления данных в языках программирования. Кроме того, достоверность результатов подтверждается также тем фактом, что получаемые при расчетах компоненты вектора смещений не выходят из диапазона допустимых значений, определенных в [3].
Выполненная вторая часть исследований показала, что наибольшие смещения наблюдаются в вертикальном направлении. Данные смещения достигают порядка 30 см. Наибольшие смещения наблюдаются ночью, когда притяжение Луны преобладает солнечное. На величину смещения в радиальном направлении, как следует из сравнения рис. 2 и 4, влияет широта размещения пункта измерения: чем ближе к экватору, тем больше вертикальное смещение. При этом следует отметить, что смещения в горизонтальной плоскости для обоих вариантов размещения пункта измерения намного меньше, чем в радиальном направлении.
Выводы
Выполненные с использованием разработанной программы исследования по оценке точности положения наземного пункта при учете твердотельного прилива, обусловленного гравитационным воздействием Луны и Солнца, показали, что отказ от учета данного воздействия вызывает абсолютную погрешность, достигающую в радиальном направлении величины порядка 30 см в выбранных пунктах наблюдения. Данное смещение вызывает задержку порядка 0,1 мс. Размещение пунктов наблюдения на широтах, близких к экватору, приведет к большей погрешности.