научный журнал «Актуальные исследования» #19 (98), май '22

Искусственный интеллект и инженерный бизнес

Одним из наиболее эффективных путей выхода рыночной экономики из системного кризиса и переход к новому технологическому укладу является расширение применение возможностей искусственного интеллекта (ИИ) и цифровой трансформации общества. Технологии искусственного интеллекта постепенно внедряют не только в IT-секторе, но и в ритейле, маркетинге, финансовой сфере и промышленности.

Аннотация статьи
наука
технологии
бизнес
искусственный интеллект
Ключевые слова

Искусственный интеллект (ИИ) напрямую соотносится с Data Science – наукой о данных, которая направлена на извлечение бизнес-ценности из массива информации. Эта ценность может заключаться, например, в расширении возможностей прогнозирования, знании о закономерностях, обоснованном принятии решений.

Разработка и активное применение технологий искусственного интеллекта – одна из актуальных задач для российской экономики. И альянс способен стать эффективным инструментом для ее решения. Он объединяет компании из разных отраслей, которые уже имеют компетенции в сфере искусственного интеллекта [1, c. 572].

Искусственный интеллект оперирует огромными массивами, анализирует поступающие данные и разрабатывает на их основе адаптивные решения. ИИ способен быстро вывести бизнес на принципиально новый уровень, это одна из его ключевых функций и задач.

Вот несколько проблем, которые можно решить с помощью алгоритмов машинного обучения:

  1. Оперативное реагирование. В некоторых сферах бизнеса принципиальное условие успеха – быстро анализировать поступающие данные и моментально на них реагировать – например, в биржевых операциях. В отличие от обычных алгоритмов, которые не способны без предварительного обучения самостоятельно адаптироваться к новым условиям и данным, искусственный интеллект обеспечивает такую возможность.
  2. Разработка маркетинговой стратегии на основе предоставленных данных и заложенных целей. Искусственный интеллект помогает в работе маркетолога: не только анализирует опыт предыдущих продаж, но и использует прогнозирование для «предсказания» будущих, а также учитывает поведение конкурентов и общую ситуацию на рынке.
  3. Человеческий фактор. Даже у самого профессионального и опытного сотрудника бывают неудачный день и неверные решения. У искусственного интеллекта – нет, вместо эмоций у него функции, а технология и информация заменяют переменчивое настроение.
  4. Борьба с мошенничеством. Самообучающиеся нейронные сети помогают анализировать поведение пользователей и выявлять подозрительные операции, а также создавать алгоритмы для предотвращения финансовых потерь. Результат: система становится менее уязвимой, а это ключевое условие доверия клиентов.
  5. Увеличение прибыли. Использование машинного обучения в одной только системе ценообразования способно обеспечить прирост выручки на 5%, а при условии комплексного подхода доходы компании могут вырасти в несколько раз.

Искусственный интеллект способен быстро вывести бизнес на принципиально новый уровень, это одна из его ключевых функций и задач.

Внедрение искусственного интеллекта в различные бизнес-сферы начинается, со сбора и обработки необходимых данных, трансформирования и систематизации их в нужный структурированный вид. Следующим шагом является разработка ИИ-алгоритмов, которые будут способны к самообучению. Здесь необходимы квалифицированные ИТ-специалисты, которые смогут научить систему искусственного интеллекта всем необходимым для компании или бизнеса действиям. Сегодня на рынке создано достаточно большое количество готовых ИИ-решений, которые помогут настроить алгоритмы искусственного интеллекта быстрее и качественнее.

После получения необходимой информации от системы искусственного интеллекта осуществляется перестройка всех технологических и бизнес-процессов, на которые оказывают влияние алгоритмы ИИ. На этом этапе, бесспорно, требуется участие не только машин, но и человека. Однако в дальнейшем ИИ с помощью нейронных сетей способен оптимизировать свою работу самостоятельно.

ИИ открывает новые возможности для решения экологических проблем планеты. Основные риски в этой области связаны с безопасностью технологий и контролем за ними. Также необходимо учитывать этические вопросы и социально-экономические последствия применения ИИ. Несмотря на это, новые технологии способны помогать людям контролировать состояние растений и животных и оказывать влияние на климатические условия.

В бизнес-сферы внедрение ИИ способно повысить важные экономические показатели компаний. Рассмотрим сферу обслуживания клиентов. В начале 2018 года компания Forrester Consulting провела исследование использования искусственного интеллекта в области обслуживания клиентов, респондентами которого стали 429 руководителей в данной области. Ключевой позицией доклада стало утверждение, что объединение эффективной технологии и способности специалистов взаимодействовать с клиентами на эмоциональном уровне обеспечивает повышенную удовлетворенность и клиентов, и самих специалистов.

Предприятия, которые объединили искусственный интеллект с работой специалистов, рассказывают, что их деятельность по обслуживанию клиентов стала более эффективной и привела к повышению удовлетворенности клиентов (61%) и специалистов (69%) [2, c. 121].

В сфере клиентского обслуживания искусственный интеллект развился до такой степени, что может решать задачи повышения эффективности операций, создания дифференцированного клиентского опыта и реализации новых источников дохода. Искусственный интеллект способен автоматизировать повторяющиеся задачи специалиста, что позволит ускорить обработку заявок. Искусственный интеллект можно использовать для прогнозирования потребностей с учетом контекста, предпочтений и предыдущих запросов, а также предоставления рекомендаций, решения проблем, отправки уведомлений и предложений. Также данная технология дает возможность обнаружения закономерности в крупных наборах данных и раскрытия новых аналитических сведений, которые компании могут использовать для предложения клиентам новых услуг и получения новых источников прибыли.

Искусственный интеллект быстрыми темпами внедряется в бизнес-реальность многих отраслей. В настоящее время данная технология выступает в качестве стратегической необходимости - ИИ позволяет повысить эффективность процессов, сформировать новый, усовершенствованный клиентский опыт и высвободить человеческие ресурсы для более креативных задач.

В бизнесе применяется так называемый слабый искусственный интеллект, умеющий решать только узкие специализированные задачи с помощью методов BigData и алгоритмов машинного обучения. Сильный искусственный интеллект, способный к многозадачности, – это обладание когнитивными способностями и возможностями, аналогичными человеческим. Его функционал решения задач одновременно в нескольких контекстах практически не ограничен: игра в шахматы, сочинение стихов, решение математических задач, бизнес-аналитика и осознание своего интеллекта как отдельной личности. Сильный ИИ, по прогнозам специалистов, появится в интервале 2040–2075 гг.

Процесс развития ИИ технологий является стимулом для экономического роста благодаря автоматизации, точности и наличию других возможностей повышения эффективности управления бизнесом. Цифровая трансформация и алгоритмы искусственного интеллекта применимы к различным бизнес-процессам, поскольку способствуют устранению некоторых системных противоречий и конфликтов путем целенаправленного использования специфических индивидуальных ресурсов. Это дает основание для устойчивого экономического развития, роста производительности труда и дальнейшей оптимизации бизнес-процессов [3 c. 81].

Текст статьи
  1. Рассел С. Искусственный интеллект. Современный подход С. / Рассел, П. Норвиг. – М.: Вильямс, 2007. – 1410 с.
  2. Бостром Ник. Искусственный интеллект. Этапы. Угрозы. Стратегии. – М.: Манн, 2018. 263 с.
  3. Стратегия развития газовой промышленности России / Под общей ред. Р.И. Вяхирева и А.А. Макарова. – М.: Энергоатомиздат, 2005. – 337 с.
Список литературы
Ведется прием статей
Прием материалов
c 01 октября по 07 октября
Осталось 5 дней до окончания
Публикация электронной версии статьи происходит сразу после оплаты
Справка о публикации
сразу после оплаты
Размещение электронной версии журнала
11 октября
Загрузка в eLibrary
11 октября
Рассылка печатных экземпляров
21 октября