Торфяные болота встречаются на всех континентах [2]. В областях распространения торфяников подземные воды по химическому составу обычно характеризуются повышенным содержанием многих веществ, чаще всего ионов железа и марганца, что препятствует использованию их для питьевого и промышленного водоснабжения. Существующие технологии водоподготовки подземных вод для питьевых целей с использованием традиционных методов аэрации, дегазации, фильтрования через инертную загрузку, предварительно обработанную реагентами, обсуждены во многих работах. Реализация таких методов требует сложного аппаратурного оформления, большой трудоемкости, значительных расходов реагентов. Основной сложностью в процессе очистки подземных вод от ионов железа и марганца является их окисление до малорастворимых соединений. Эффективность этого процесса определяется равновесным значением рН раствора. Заметное увеличение скорости окисления двухвалентных ионов марганца до Mn(III) и Mn(IV) устанавливается при рН≥9,5, процесс обезжелезивания улучшается при уменьшении рН [1, с. 221].
В последние годы при доведении подземных вод по содержанию ионов железа и марганца до питьевого качества наблюдается тенденция внедрения технологий, основанных на применении сорбционно-фильтрующих загрузок, обладающих каталитическими свойствами и способностью ускорять реакции окисления ионов Fe(II) и Mn(II) до малорастворимых соединений. В таком качестве широкое применение при водоподготовке получили импортные фильтрующие каталитические материалы Aqua-mandix (Аква-мандикс) и Pyrolox (Пиролокс) на основе измельченной природной пиролюзитсодержащей руды, содержащей 78-80 мас.% MnO2. Действие таких сорбционно-фильтрующих материалов основано на катализе реакции окисления Fe(II) и Mn(II) без дополнительных добавок и реагентной обработки и осаждении образующегося малорастворимого осадка в гранулах фильтроматериала. Однако, возможность широкого применения таких материалов для их использования в качестве сорбционно-каталитической и фильтрующей загрузки для очистки от ионов марганца и железа питьевой воды из подземных источников в системах водоподготовки небольшой производительности, что характерно для малочисленных населенных пунктов на территориях заболоченных регионов, ограничена их высокой стоимостью и малой доступностью.
В настоящей работе обобщены результаты исследования хемосорбционной способности болотных железомарганцевых руд в отношении ионов железа и марганца и рассмотрены перспективы их использования при водоподготовке питьевой воды из подземных источников с повышенным содержанием двухвалентных ионов марганца и железа в качестве сорбционно-фильтрующей загрузки и катализатора процесса окисления этих ионов до малорастворимых соединений.
Выбор сорбента обусловлен тем, что по гранулометрическому и химическому составу болотная железомарганцевая руда объединяет в себе свойства применяемых в качестве сорбционно-каталитической и фильтрующей загрузки природных минеральных материалов. Каталитические свойства фильтрующей загрузки зависят от содержания марганца в руде и крупности зернового состава. В эксперименте использована болотная железомарганцевая руда, образцы которой представлены, в основном, бернесситом, с содержанием марганца в среднем 57,98 at.% [5, с. 1065-1067]. В исходном состоянии рудные образцы темно-коричневого цвета, имеют рыхлую механическую структуру.
Процесс извлечения ионов железа и марганца из подземных вод может быть представлен в виде совокупности реакций, происходящих в системе руда-водный раствор. На основании литературных данных [3] при фильтровании воды из подземных источников с повышенным содержанием двухвалентных ионов марганца и железа через загрузку на поверхности зерен марганцевой руды образуется слой из отрицательно заряженного осадка оксигидрата марганца Mn(ОН)4, который адсорбирует ионы Mn2+.
Гидролизуясь, эти ионы вступают в реакцию с осадком, образуя Mn2О3, хорошо окисляемый до оксигидрата марганца (IV), действующего в процессе окисления в качестве катализатора:
Mn(ОН)4 + Mn(ОН)2 → Mn2О3 + 3Н2О;
2Mn2О3 +О2 + 8Н2О → 4Mn(ОН)4↓.
Извлечение ионов железа основано на реакции окисления Fe(II) до Fe(III) с образованием малорастворимого осадка гидроксида железа (III), описываемой уравнением:
MnO2 + 2Fe2+ + 5H2O → MnO + 2Fe(OH)3↓ + 4H+.
Для исследований исходную болотную железомарганцевую руду измельчали до размера естественных гранул, рудную составляющую отделяли от песчано-глинистой составляющей ситовым методом. Подготовленные таким образом образцы болотной руды рассматривались как исходные. Для сорбции ионов марганца и железа использовали рудную составляющую, представленную смесью фракций класса крупности 0,16 – 1,25 мм. Сорбцию ионов марганца и железа болотной рудой изучали в статическом режиме при температуре 25ОС с использованием модельных растворов, приготовленных на дистиллированной воде, и природных подземных вод при соотношении твердой (Т) и жидкой (Ж) фаз 1:100. Эффективность сорбции в каждом конкретном случае оценивали путем сравнения значения исходной концентрации определяемых ионов в растворе с остаточной концентрацией после контакта раствора с сорбентом. Контроль содержания ионов марганца и железа в исходных и равновесных растворах осуществляли фотометрическим методом на фотоколориметре КФК-2МП по стандартным методикам. Интерпретацию полученных экспериментальных данных проводили построением графической зависимости изменения концентрации остаточного содержания определяемых ионов в растворе от продолжительности контакта раствора с сорбентом τ в координатах Сτ = f(τ) в программе МS Excell. Для исследования кинетики процесса сорбции готовили модельные растворы с фиксированной концентрацией ионов железа 2 мг/дм3 и марганца 1 мг/дм3. Эффективность использования природного материала в его естественном состоянии оценена на анализируемых пробах воды, отобранных из шахтных колодцев, с содержанием ионов двухвалентного марганца в интервале от 0,356 мг/дм3 до 1,920 мг/дм3 и ионов железа от 0,410 мг/дм3 до 1,926 мг/дм3.
Анализируя полученные результаты установлено, что характер сорбционной активности определяемых ионов идентичен, максимальные скорости извлечения ионов марганца и железа из раствора отмечаются на начальных стадиях сорбции в интервале первых минут контакта раствора с сорбентом. Степень извлечения ионов марганца в течение первых 5 мин контакта раствора с сорбентом достигает 76,1 %, а через 30 минут составила 86,3 %, достигая в течение 90 мин 91,5 %. Степень извлечения ионов железа в данном диапазоне продолжительности сорбции составила 90,8%, 96,4% и 98,4% соответственно. Адсорбционную активность болотных железомарганцевых руд по извлечению ионов марганца и железа из природной подземной воды изучали в аналогичных условиях эксперимента. Степень извлечения определяемых ионов при продолжительности контакта воды с сорбентом в течение 90 мин в анализируемых пробах в зависимости от исходной концентрации составила: ионов марганца 94,5 – 96,2 %; ионов железа 97,7 - 98,8 %. Остаточная концентрация определялась в интервале концентраций ионов марганца 0,020 – 0,086 мг/дм3, ионов железа 0,007 – 0,035 мг/дм3, что не превышает установленные нормативы к составу питьевой воды (ПДКMn = 0,1 мг/дм3; ПДКFe= 0,3 мг/дм3). Исследования основных адсорбционных характеристик образцов болотной железомарганцевой руды по отношению к ионам марганца и железа выполнены в работе [4].
Таким образом, при доведении природных подземных вод до питьевого качества по содержанию ионов марганца и железа с использованием в системах водоподготовки болотной железомарганцевой руды остаточная концентрация определяемых ионов не превышает установленные нормативы (СанПиН 2.1.4.1074-01, СанПиН 2.1.4.1075-02). Анализ полученных результатов и сравнительные данные показателей с известными образцами сорбционно-каталитических материалов позволяют считать перспективным использование болотных железомарганцевых руд в процессах водоподготовки подземных вод с повышенным содержанием ионов марганца и железа.