Введение
Проблема воздействия электрического поля на живые организмы сейчас, как никогда ранее, становятся особенно актуальными ввиду интенсивной застройки жилыми зданиями, территорий, прилегающих к объектам электроэнергетики, в которых находятся технические устройства различного назначения с интенсивной эмиссией электромагнитных помех.
Факторами воздействия устройств электроэнергетики на человека являются: электрические разряды (импульсные токи), возникающие при прикосновении человека к изолированным от земли конструкциям, воздействие тока, проходящего через человека, находящегося в контакте с изолированными от земли объектами – ток стекания, электрические и магнитные поля. Интенсивная эмиссия электромагнитных полей наблюдается от высоковольтных линий электропередачи.
Предельно допустимые уровни напряженности электрического поля приведены в Санитарных нормах и правилах «Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты» № 2971-84, допустимые уровни напряженности ЭП 50 Гц вне зависимости от вида источника в жилых помещениях не должны превышать 0,5 кВ/м. СанПиН 2.1.2.1002 -2000 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям», на территории зоны жилой застройки – 1 кВ/м, значения напряженности нормируются для электрического поля, не искаженного присутствием человека, напряженность электрического поля определяется на высоте 1,8 м от уровня земли, а для помещений - от уровня пола. По результатам измерений и расчетов, делаются выводы о длительности работ и пребывания людей в местах воздействия поля.
В работе рассчитана напряженность электрического поля, создаваемого воздушной высоковольтной линией передачи подстанции (ПС) «Западная», попавшей в настоящее время в черту жилых районов города Ставрополя.
ПС «Западная» была построена в середине XX века. Тогда местом ее расположения была окраина г. Ставрополя, в настоящее время «Западная» находится в центре жилого района г. Ставрополя. Ближайшие жилые дома и МОУ лицей № 16 находится на расстояниях 8…20 м от линии электропередачи (ЛЭП) 110 кВ, питающей подстанцию, нежилые строения с временным пребыванием людей (гаражи) находятся непосредственно под ЛЭП – рисунок 1.
Основная проблема - воздействие электрического поля промышленной частоты ЛЭП на людей в жилых домах, и на детей в лицее № 16.
Рис. 1. Фотографии расположения линии электропередачи 110кВ и жилых домов
Расчетная часть
Одноцепные и двухцепные (на опорах расположены одна и две трехфазные системы) ЛЭП выполнены проводом диаметром 19.4мм, использованы опоры У110-1 и П110-6В – рисунок 2. На большинстве опор имеется грозозащитный трос, трасса проходит на расстояниях от 10м до 20м от стен жилых домов и лицея. Грунт под ЛЭП – суглинок, с удельным сопротивлением (0,2..1,5)∙102 Ом∙м, в зависимости от влажности и температуры, так как на объекте в грунте высокое содержанием влаги, то его удельное сопротивление принято ρ0 = 0,2∙102 Ом∙м, что без всяких ограничений позволило считать землю идеальным проводником. Модуль рабочего напряжения линии 110 кВ,
Рис. 2. Чертежи двухцепной и одноцепной опор ЛЭП 110 кВ ПС «Западная» жилом районе г. Ставрополя (H=15м)
Расчеты выполнены методом зеркальных изображений по группам уравнений Максвелла в математическом пакете MathCAD 14, результаты представлены в виде графических зависимостей. В плоскости земли на высоте 1,8м и в вертикальной плоскости на расстояниях, соответствующих удаленности здания от трассы ЛЭП.
Рис. 3. Чертеж системы проводников ЛЭП и их зеркальных изображений, разметка расстояний и координатных осей (к методу зеркальных изображений)
Поле одноцепной ЛЭП
Расчеты показали, что по линии вертикали, совпадающей со стеной жилого дома напряженность поля не выше 400 В/м (амплитудное значение) и 300 В/м по действующему значению для линии с молниезащитным тросом, а без него не выше 550 В/м (амплитудное значение) и 470 В/м по действующему значению под линией с молниезащитным тросом. Эти величины не выше рекомендованных санитарными нормами.
Поле двухцепной ЛЭП
Для двухцепной линии расчетные значения оказались значительно выше, результаты представлены графическими зависимостями, приведенными на рисунках 4 и 5.
Видно, что напряженность электрического поля под линией без молниезащитного троса в месте расположения зоны отдыха людей превышает норму в более чем в 4 раза, введение молниезащитного троса нормализует ситуацию (рис. 4).
Для стены ближайшего здания, где постоянно проживают люди норма напряженности, превышает рекомендованное значение для ЛЭП с молниезащитой на 20% и для ЛЭП без молниезащиты более чем в четыре раза.
Рис. 4. График распределения напряженности электрического поля на высоте 1.8 м над поверхностью земли для двухцепной ЛЭП (отсчет от ближайшей стены дома)
Рис. 5. График зависимости напряженности электрического поля от высоты над поверхностью земли от расстояния 8 м для двухцепной ЛЭП (ближняя стена жилого дома)
Оценка электромагнитной обстановки (ЭМО) в отношении электрического поля промышленной частоты (50Гц) вблизи ЛЭП
Как следует из полученных в настоящей работе данных, одноцепная линия 110 кВ не приводит к появлению электрического поля промышленной частоты (ПЧ) напряженностью выше значений, предписанных Нормами. Эта ситуация наблюдается для линий с молниезащитным тросом и без него.
Для двухцепной линии с молниезащитным тросом непосредственно под линией, где расположена зона отдыха (скамейки и беседки) напряженность поля также составляет значение не выше предписанных Нормами. Однако, начина с 18 метров – 6 этаж жилого дома и до 8 этажа наблюдается превышение нормы на 20–30%. Напряженность поля не превышает допустимую величину непосредственно под линией, на верхних этажах жилого дома превышение норм составляет около 30%.
Что касается двухцепной линии без молниезащитного троса, то здесь ситуация значительно хуже – превышение норм (рис. 5) напряженности поля на указанных выше этажах составляет более 4-х раз.
Последние обстоятельства требуют разработки мероприятий по снижению напряженности электрического поля, которое превышает допустимый уровень.
Рекомендации по улучшению ЭМО в районе в соответствие с нормами СЭС
Перемещение опор ЛЭП дальше от жилых домов невозможно ввиду их полного примыкания к лесопарковой зоне, где расположена школа, поэтому один из способов уменьшить напряженность поля двухцепной линии без молниезащитного троса возможно путем добавления молниезащитного троса. Второй путь – увеличение высоты опор, чтобы области высоких напряженностей поля оказались выше квартир дома. Для этого проведены расчеты, результаты которых показаны в таблице 1. Как следует из данных таблицы, такой способ малоэффективен, так как требуется существенного увеличение высоты и применения нестандартных опор.
Таблица
Влияние прибавки высоты опор на напряженность поля на уровне 2-6 этажей жилого дома
Прибавка к высоте опоры Δh, м | Напряженность поля на 2 этаже E, В/м | Напряженность поля на 6 этаже E, В/м |
0 | 1200 | 1600 |
1 | 1200 | 1550 |
2 | 1150 | 1400 |
4 | 1000 | 1300 |
6 | 900 | 1250 |
8 | 850 | 1250 |
10 | 850 | 1250 |
15 | 600 | 800 |
Остается единственный способ улучшения ЭМО в квартирах - применить экранирование хотя бы части жилого дома, располагаемой ближе всего к ЛЭП, расположив на стенах металлическую заземленную фольгу, применяемую обычно в теплоизолирующих плитах.